def optimize_matrix(
    modified_embedding_length: int = 2048,  # in my brief experimentation, bigger was better (2048 is length of babbage encoding)
    batch_size: int = 100,
    max_epochs: int = 100,
    learning_rate: float = 100.0,  # seemed to work best when similar to batch size - feel free to try a range of values
    dropout_fraction: float = 0.0,  # in my testing, dropout helped by a couple percentage points (definitely not necessary)
    df: pd.DataFrame = df,
    print_progress: bool = True,
    save_results: bool = True,
) -> torch.tensor:
    """Return matrix optimized to minimize loss on training data."""
    run_id = random.randint(0, 2 ** 31 - 1)  # (range is arbitrary)
    # convert from dataframe to torch tensors
    # e is for embedding, s for similarity label
    def tensors_from_dataframe(
        df: pd.DataFrame,
        embedding_column_1: str,
        embedding_column_2: str,
        similarity_label_column: str,
    ) -> Tuple[torch.tensor]:
        e1 = np.stack(np.array(df[embedding_column_1].values))
        e2 = np.stack(np.array(df[embedding_column_2].values))
        s = np.stack(np.array(df[similarity_label_column].astype("float").values))
        e1 = torch.from_numpy(e1).float()
        e2 = torch.from_numpy(e2).float()
        s = torch.from_numpy(s).float()
        return e1, e2, s
    e1_train, e2_train, s_train = tensors_from_dataframe(
        df[df["dataset"] == "train"], "text_1_embedding", "text_2_embedding", "label"
    )
    e1_test, e2_test, s_test = tensors_from_dataframe(
        df[df["dataset"] == "test"], "text_1_embedding", "text_2_embedding", "label"
    )
    # create dataset and loader
    dataset = torch.utils.data.TensorDataset(e1_train, e2_train, s_train)
    train_loader = torch.utils.data.DataLoader(
        dataset, batch_size=batch_size, shuffle=True
    )
    # define model (similarity of projected embeddings)
    def model(embedding_1, embedding_2, matrix, dropout_fraction=dropout_fraction):
        e1 = torch.nn.functional.dropout(embedding_1, p=dropout_fraction)
        e2 = torch.nn.functional.dropout(embedding_2, p=dropout_fraction)
        modified_embedding_1 = e1 @ matrix  # @ is matrix multiplication
        modified_embedding_2 = e2 @ matrix
        similarity = torch.nn.functional.cosine_similarity(
            modified_embedding_1, modified_embedding_2
        )
        return similarity
    # define loss function to minimize
    def mse_loss(predictions, targets):
        difference = predictions - targets
        return torch.sum(difference * difference) / difference.numel()
    # initialize projection matrix
    embedding_length = len(df["text_1_embedding"].values[0])
    matrix = torch.randn(
        embedding_length, modified_embedding_length, requires_grad=True
    )
    epochs, types, losses, accuracies, matrices = [], [], [], [], []
    for epoch in range(1, 1 + max_epochs):
        # iterate through training dataloader
        for a, b, actual_similarity in train_loader:
            # generate prediction
            predicted_similarity = model(a, b, matrix)
            # get loss and perform backpropagation
            loss = mse_loss(predicted_similarity, actual_similarity)
            loss.backward()
            # update the weights
            with torch.no_grad():
                matrix -= matrix.grad * learning_rate
                # set gradients to zero
                matrix.grad.zero_()
        # calculate test loss
        test_predictions = model(e1_test, e2_test, matrix)
        test_loss = mse_loss(test_predictions, s_test)
        # compute custom embeddings and new cosine similarities
        apply_matrix_to_embeddings_dataframe(matrix, df)
        # calculate test accuracy
        for dataset in ["train", "test"]:
            data = df[df["dataset"] == dataset]
            a, se = accuracy_and_se(data["cosine_similarity_custom"], data["label"])
            # record results of each epoch
            epochs.append(epoch)
            types.append(dataset)
            losses.append(loss.item() if dataset == "train" else test_loss.item())
            accuracies.append(a)
            matrices.append(matrix.detach().numpy())
            # optionally print accuracies
            if print_progress is True:
                print(
                    f"Epoch {epoch}/{max_epochs}: {dataset} accuracy: {a:0.1%} ± {1.96 * se:0.1%}"
                )
    data = pd.DataFrame(
        {"epoch": epochs, "type": types, "loss": losses, "accuracy": accuracies}
    )
    data["run_id"] = run_id
    data["modified_embedding_length"] = modified_embedding_length
    data["batch_size"] = batch_size
    data["max_epochs"] = max_epochs
    data["learning_rate"] = learning_rate
    data["dropout_fraction"] = dropout_fraction
    data[
        "matrix"
    ] = matrices  # saving every single matrix can get big; feel free to delete/change
    if save_results is True:
        data.to_csv(f"{run_id}_optimization_results.csv", index=False)
    return data